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Strengthof ChemicalBonds

Students are not generally made aware of the extraordi-

nary magnitude of the strengths of chemical bonds in

terms of the forces required to pull them apart. Molecular

bonds are usually considered in terms of the energies re-
quired to break them, and we are not astonished at the

values encountered. For example, the C12 bond energy,

57.00 kcal mole -1, amounts to only 9.46 × 10 -20 cal mole-

cule -1, a very small amount, of energy, indeed, and im-

possible to measure directly. However, the forces involved

in realizing the energy when breaking the bond operate
over a very small distance, only 2.94 A, and, thus, fay,,

De/(r - re) must be very large.

The following is an illustration to dramatically demon-

strate the great strengths of chemical bonds compared to

macroscopic concepts. Consider the homonuclear diatomic

molecule asCl2 whose potential energy may be represented

by the Morse function

V(r) = 57.0011 -- e -:'°_: _'-L"']_kca] mole -1 (1)

V(r) is the potential energy of the molecule and r is the

bond length in Angstroms; the function is plotted in Fig-
ure 1. This bond shall be taken as comprising a represen-
tative chemical bond.

The forces involved in dissociating the molecule are dis-

cussed in the following. In consideration of average forces,

the molecule shall be assumed arbitrarily to be dissociat-

ed when the atoms are far enough separated so that the

potential, relative to that of the infinitely separated

atoms, is reduced by 99.5% from the potential of the mol-
ecule at the equilibrium bond length (re) for C12 of 1.988
A; this occurs at 4.928 A.

The force of the bond is given by

dV(r)
f(r) dr -232"2[e-_°3:'r-19sS' -e-_°:*'-I _ss'],

o

kcal mole-_A -z (2)

The external force required to hold the bond at any given
length is simply the negative of this value and the average

force necessary to stretch the bond to a given length from

the equilibrium length of 1.988 A is given by
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Figure 1. Potential energy function plotted for the CI2 molecule.

7"

7'

i

50

40

30

20

l0

o

-lO
1

J

3 4 5

r,A

Figure 2. Force, -f(r), required to stretch a CI2 molecule bond as a
function of internuclear distance, r.

_ave

]- -2 137_r -- 1 958) 1 -_ O-4qr 19_ _

= 232.2[-2._e +4._e ' - J + 57.00

kcal mole-_A -_ (3)

(r - 1.988)

As the bond is stretched from 1.988 A, we may see from

eqn. (2) that the initial force required is zero; as the bond
is stretched, a maximum force 1 of 58.1 kcal mole -1 A -1 is

reached at the inflection point of 2.328 A and, upon fur-

ther stretching, the force gradually decreases again and

approaches zero as the distance becomes large. The aver-
age force required to break the bond (to stretch it to 4.928

A) is 19.3 kcal mole -_ A -_. The force opposing the

stretching of the bond is plotted as a function of internu-

clear distance in Figure 2. At distances less than the equi-

librium bond length the repulsive forces in the molecule

become large very rapidly.
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x The distance and value of maximum force are calculated from
the relationship

-dr�dr = 0 = 232.2[-2.037e 2.037tr-l.98s, +

4.074e 4 074,r 1 98S,]

which gives the solution of r = 2.328 A; this may be rigorously

shown to he a distance of maximum force by evaluating d2f/dr 2
at 2.328 A and seeing that it is < 0. [,.._ is then calculated from
eqn. (2) to be 58.05 kcal mole- 1A- 1

[Reprinted from Journal of Chemical Education. Vol. 50, Page 176, March, 1973.]
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A striking result appears when these figures are con-
verted to values in terms of ordinary force units. Using the

conversion factor 1 kcal = 94,060 cm lbs, the average force

required to break a mole of C12 bonds all at once is seen to
be

9 --1°-I19._kcalmole A × 94,060cmlbskca1-1

lO-_cm X-1 × 20001bs ton -1
0.90 × 10-11 tons mole -_

and the maximum force realized is 2.73 × 1011 tons

mole -1. Per molecule, /'ave = 0.136 × 10 -6 g molecule -1

and /max = 0.411 × 10 -6 g molecule -1. This is a force,
0.4#g, for a single molecule, which is macroscopically
measurable!! In terms of the number of molecular masses

required to exert the force, this is equivalent to 3.5 × 1015

molecules suspended from one end of a molecule with the

other end held stationary.

The very great bond strengths explain why metal fibers

are exceptionally strong for their sizes. The tensile

strength of conventionally hard drawn tungsten is 590,000
lbs in -z. Using the covalent radius 1.30 A for tungsten,

this calculates to be 0.022 ug per atomic cross sectional
area, within the order of magnitude of the bond force cal-

culated for C12. The tensile strength of graphite fibers is
of the order of 0.005 ug per atomic cross sectional area.

To get an even more impressive feel for the magnitude

of the strength of the bond, let us expand our molecule to

macroscopic dimensions. A molecule of 2 A bond length

might be thought of as 2 microbaseballs of 1 A radius held

together by a "Morse" spring (which exhibits anharmoni-

city when stretched). If this is compared to ordinary base-

balls of, say, 3.7 cm radius, a linear increase of 3.7 × 10 s
times or a volume increase of 51 x 102't times is seen. If

the forces are multiplied by this factor, 0.411 × 51 × 1024

= 21 x 1024/_g or 23 trillion tons is obtained for the maxi-

mum force and 0.36 × 51 x 1024 = 6.9 x 1024 pg or 7.6

trillion tons for the average force. Thus, one might picture

the pulling apart of a molecule as equivalent to pulling

apart a pair of baseballs connected with a spring requiring
a maximum force of 23 trillion tons to extend it. The

maximum force would occur at a separation of the base-
ball centers of 3.7 x 10 s x 2.33 × 10 -s cm = 8.6 cm and

the spring would "break ''2 at 3.7 x 10 s × 4.93 × 10 -s cm
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Figure 3. Depiction of a molecule of macroscopic "dimensions.

= 18 cm. To be correct, the mass of the baseball should

be concentrated in the center (nucleus). Since the nuclear

to atomic diameter ratio for CI is approximately

(10-4A)/(2A) = 5 x 10 -_, the nucleus of each baseball
atom would be _0.037 mm diameter and would comprise

practically all of the mass. The remainder of the "macro-

scopic" molecule would consist of approximately spherical

electron clouds filling the space between the nuclei which

are separated by 7.4 cm; these clouds form the very strong
bond. This, then, would have the characteristics of a mol-

ecule which has been enlarged to macroscopic world size.

The "macroscopic molecule" and its properties are de-

picted in Figure 3.

2 The reader may note that the bond dissociation energy of the
baseball molecule [(18.2cm - 7.4cm) (7.62 x 1012 tons x 2000 lbs
ton -1) = 1.65 x 1017 cm lbs or 1.75 × 1012 kca[)] is a factor of
1.85 x 1034 greater than that of the C12 molecule (57.00 kcal
mole -_ or 9.46 x 10 -23 kcal molecule-_), even though the mass
(volume} ratio is only 5.1 x 10_. The difference is a factor of 3.7
x los, the ratio of the bond lengths. This, of course, arises be-
cause the baseball molecule bond is stretched a factor of 3.7 x
l0 s farther than the C12 bond before breaking. The author feels

the analogy of a spring "stiffness" of the baseball molecule being
greater than that of the CI2 molecule by a factor of the ratio of
the masses is more appropriate than the alternative choice of

using the ratio of masses to the 2/3power.


